Involvement of NarK1 and NarK2 proteins in transport of nitrate and nitrite in the denitrifying bacterium Pseudomonas aeruginosa PAO1.

نویسندگان

  • Vandana Sharma
  • Chris E Noriega
  • John J Rowe
چکیده

Two transmembrane proteins were tentatively classified as NarK1 and NarK2 in the Pseudomonas genome project and hypothesized to play an important physiological role in nitrate/nitrite transport in Pseudomonas aeruginosa. The narK1 and narK2 genes are located in a cluster along with the structural genes for the nitrate reductase complex. Our studies indicate that the transcription of all these genes is initiated from a single promoter and that the gene complex narK1K2GHJI constitutes an operon. Utilizing an isogenic narK1 mutant, a narK2 mutant, and a narK1K2 double mutant, we explored their effect on growth under denitrifying conditions. While the DeltanarK1::Gm mutant was only slightly affected in its ability to grow under denitrification conditions, both the DeltanarK2::Gm and DeltanarK1K2::Gm mutants were found to be severely restricted in nitrate-dependent, anaerobic growth. All three strains demonstrated wild-type levels of nitrate reductase activity. Nitrate uptake by whole-cell suspensions demonstrated both the DeltanarK2::Gm and DeltanarK1K2::Gm mutants to have very low yet different nitrate uptake rates, while the DeltanarK1::Gm mutant exhibited wild-type levels of nitrate uptake. Finally, Escherichia coli narK rescued both the DeltanarK2::Gm and DeltanarK1K2::Gm mutants with respect to anaerobic respiratory growth. Our results indicate that only the NarK2 protein is required as a nitrate/nitrite transporter by Pseudomonas aeruginosa under denitrifying conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The P aracoccus denitrificans NarK‐like nitrate and nitrite transporters—probing nitrate uptake and nitrate/nitrite exchange mechanisms

Nitrate and nitrite transport across biological membranes is often facilitated by protein transporters that are members of the major facilitator superfamily. Paracoccus denitrificans contains an unusual arrangement whereby two of these transporters, NarK1 and NarK2, are fused into a single protein, NarK, which delivers nitrate to the respiratory nitrate reductase and transfers the product, nitr...

متن کامل

Denitrifying Pseudomonas aeruginosa: some parameters of growth and active transport.

Optimal cell yield of Pseudomonas aeruginosa grown under denitrifying conditions was obtained with 100 mM nitrate as the terminal electron acceptor, irrespective of the medium used. Nitrite as the terminal electron acceptor supported poor denitrifying growth when concentrations of less than 15 mM, but not higher, were used, apparently owing to toxicity exerted by nitrite. Nitrite accumulated in...

متن کامل

Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa.

Oxygen had an immediate and reversible inhibitory effect on nitrate respiration by denitrifying cultures of Pseudomonas aeruginosa. Inhibition of nitrate utilization by oxygen appeared to be at the level of nitrate uptake, since nitrate reduction to nitrite in cell extracts was not affected by oxygen. The degree of oxygen inhibition was dependent on the concentration of oxygen, and increasing n...

متن کامل

Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus.

UNLABELLED Oxidative phosphorylation using multiple-component, membrane-associated protein complexes is the most effective way for a cell to generate energy. Here, we systematically investigated the multiple protein-protein interactions of the denitrification apparatus of the pathogenic bacterium Pseudomonas aeruginosa During denitrification, nitrate (Nar), nitrite (Nir), nitric oxide (Nor), an...

متن کامل

Protein complex formation during denitrification by Pseudomonas aeruginosa

The most efficient means of generating cellular energy is through aerobic respiration. Under anaerobic conditions, several prokaryotes can replace oxygen by nitrate as final electron acceptor. During denitrification, nitrate is reduced via nitrite, NO and N2 O to molecular nitrogen (N2 ) by four membrane-localized reductases with the simultaneous formation of an ion gradient for ATP synthesis. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 72 1  شماره 

صفحات  -

تاریخ انتشار 2006